中国指挥与控制学会

会员登录 会员注册
 

关注

 

关注

仿人机器人相关知识大汇集

发布时间:2020年2月24日


什么是仿人机器人

模仿人的形态和行为而设计制造的机器人就是仿人机器人,一般分别或同时具有仿人的四肢和头部。中国科技大学陈小平教授介绍,机器人一般根据不同应用需求被设计成不同形状,如运用于工业的机械臂、轮椅机器人、步行机器人等。而仿人机器人研究集机械,电子,计算机,材料,传感器,控制技术等多门科学于一体,代表着一个国家的高科技发展水平。从机器人技术和人工智能的研究现状来看,要完全实现高智能,高灵活性的仿人机器人还有很长的路要走,而且,人类对自身也没有彻底地了解,这些都限制了仿人机器人的发展。基于ARM9的嵌入式仿人机器人传感器系统设

传感器技术是仿人机器人研究的关键技术之一。仿人机器人之所以能在已知或未知的环境中完成一定的作业功能,是因为它能够通过传感器感知外部环境信息和自身状态,获得反馈信息,实现系统的闭环控制。目前在仿人机器人中应用的传感器种类繁多,例如视觉传感器、电子罗盘、加速度计和超声波传感器等都是仿人机器人中常用的传感器。  DF-1机器人是我院自主研制的一款仿人机器人。本文首先对DF-1机器人总系统进行了介绍,然后根据DF-1机器人需要实现的功能,设计DF-1机器人的传感器系统,然后实现传感器系统的具体工作电路,利用ARM9实现了传感器系统信息的采集,最后对传感器系统的效果进行了试验验证。 1 .DF-1仿人机器人简介  DF-1机器人模仿人体外形结构,利用舵机结构实现人类关节的功能,如图1所示。DF-1身长45 cm,共设有17个自由度,具体分配为:踝关节2×2=4个自由度,膝关节2×1=2个自由度,胯关节2×2=4个自由度,肩关节2×2=4个自由度,肘关节2×1=2个自由度,头部1个自由度。DF-1机器人内部采用ARM9微处理器,主要用来完成信息的融合、决策和规划等任务。DF-1机器人已经能够实现的功能有步行、做俯卧撑、上楼梯、打太极拳,这些功能的实现是建立在:DF-1机器人具有良好机械结构基础上的,通过人工调试,设定具体程序完成的。为提高机器人动作的稳定性,实现DF-1机器人的智能控制,需要对机器人配置传感器系统,使机器人能够感知自身状态和外界环境。 2 传感器系统设计  DF-1机器人的胸腔部位安装了三个超声传感器,分别用来测量机器人正前、左前和右前方向的障碍物。在该传感器系统中,采用了ARM9微处理器作为信息的采集、数据预处理和通信单元。由于超声波传感器存在多次反射问题,在超声波相对应的位置安装了三个红外测距传感器用来解决这一问题。传感器系统获取的信息采用定长字节格式通过RS 232接口传送给上位机。传感器系统的基本结构如图1所示。  2.1 加速度计传感器  判定机器人姿态的传感器有陀螺仪和加速度计等传感器,由于陀螺成本较高,而DF-1机器人在运动变化上较为缓慢,故本文采用了成本较低的加速度计来感知机器人的姿态。加速度计是物体运动测试中的重要元件,它的输出与物体的加速度成比例。传感器系统所采用加速度计的具体型号为AD公司生产的双轴加速度计ADXL202。ADXL202具有两种输出,一种是从XFILT和YFILT引脚输出模拟信号;另一种是直接从XOUT和YOUT引脚输出经调制后的DCM信号。在具体使用中,选用了加速度计的DCM信号输出,这样就可省去使用模拟信号需要引入的A/D转换环节,简化了电路设计难度。  2.2 超声传感器  用来测距的传感器主要有红外传感器、超声波传感器、激光测距仪等,为了能在测量距离的同时判断出物体的大致形状,应设计成多传感器测距系统。考虑到机器人的安装空间以及成本问题,主要选用了超声波传感器进行距离的测量。  超声波传感器主要用来完成机器人到周围障碍距离信息的测量,超声波在测距过程中存在多次反射问题,即超声波遇到障碍物体时,没有沿着原路返回发射接收点,而是经过多次反射后才返回发射接收点,这样测量到的距离信息不再真实,情况严重时会“丢失”目标。本文选用DEVANTECH公司生产的SFR05。SFR05的体积小,信号稳定,便于在机器人中安装,而且SFR05的测量距离为1 cm~4 m,在最小测量距离上可认为该传感器不存在盲区。  2.3 红外传感器  为了弥补超声传感器在测距中多次反射的问题,在超声波相对应的位置安装了三个红外测距传感器。当超声波传感器测量的距离远远大于同方向上红外传感器测量的距离时,可以据此推断出超声波已经进行了多次反射,并用红外传感器测量的距离信息来取代超声波传感器的信息。本文使用的红外传感器为SHARP公司生产的GP2D12,可测距离为10~80 cm。GP2D12加上电源就可工作,输出电压为0.3~2.8 V。GP2D12传感器在测量距离时受外界光强度、物体外表反射率及物体颜色的影响较小。 3 软件实现  传感器系统数据采集与处理单元采用ARM9微处理器,主要完成以下功能:实现对加速度计的控制和加速度的测量,并根据加速度值,计算机器人的倾角;实现对超声波传感器的控制,完成距离信息的计算;实现对红外传感器的控制,完成距离信息的获取;对获得的倾角、超声波测距和红外测距数据,按照规定的通信协议发送给上位机,程序主流程如图3所示。 程序首先要初始化,主要包括系统时钟的选择、管脚的分配、中断优先级、定时器时钟和工作方式的选定等。在ARM9内部资源中,具有PCA定时器单元和A/D单元,这些方便了对本传感器系统的数据采集。防止超声波传感器之间发生串扰,对超声波传感器采用轮流测量的方式。由于超声波传感器的工作周期为50 ms,当工作时间少于50 ms时,超声波传感器会误认为下次测量发送超声波产生的干扰为本次的回波,造成距离测量上的失真,而红外传感器建立电压的时间只需要5 ms,所以在编程上,利用定时器0产生50 ms延迟,依次对3对超声波传感器和红外传感器进行数据采集。由于加速度传感器和红外、超声传感器之间是独立的,而且数量只有一个,它的采集过程只依赖于PCA捕捉模块捕捉到的时刻,所以加速度计信息的采集和预处理工作可贯穿于150 ms以内。在完成对传感器系统的信息采集和预处理后,还要将获取的数据发送给上位机,为上位机的决策提供必要的数据。  4 实验验证  4.1 加表实验  由于当机器人倾斜的时候,重力加速度会在加速度两轴上产生分量,这时加速度值为Ax=gsin α和Ay=gsinβ。在加速度计水平放置的时候,Ax=gsin α,由于条件的限制,很难使加速度计达到绝对水平。在α=0附近,sin α变化幅度大,这样会影响标定效果,而在a=π/2附近,sin α变化幅度较小。为了得到较好的加速度计标定效果,采用了竖直标定的方法,即将PCB电路板用细线悬挂起来,分别得到g和-g时的值,通过计算就可得到加速度在0g时的值。由于ADXL202的输出含有高斯白噪声,应用直接采来的数据会有较大的误差,因而需要对采集来的数据进行处理后再加以应用。  通过平均值滤波可降低噪声的影响,假设Xi为直接采集来的数据,Yi为平均值滤波后的数据,Yi=(∑xi)/n,由概率论知识可知,EYi=EXi,DYi=DXi/n。从中可看出平均值滤波的效果与平均点数n有关,n越大,滤波效果越好。考虑到机器人的运动情况,可取n=15,即噪声的方差变为原来的1/15。图4是DF-1机器人在运动过程中获取的倾斜角度值。其中L1表示了机器人的俯仰角度,L2表示了机器人的横滚角度。 由于DF-1仿人机器人体型较小,运动较为缓慢,在障碍距离测量上,能够对付2 m以内的障碍就可满足应用要求。在2 m以内不同距离上放置平面障碍,利用超声波和红外传感器测量这些距离信息,测得的距离与实际距离如表1所示。 从表中可以看出,超声波测量距离的误差在2%以内,红外传感器测量距离的误差在4%以内,可以满足DF-1仿人机器人的应用要求。  5 结语  本文针对DF-1机器人要实现的功能,基于ARM9微处理器设计了传感器系统。试验结果证明,本传感器系统基本可以满足机器人的功能需求,具有一定的应用价值。具备传感器系统的DF-1机器人对外界环境和自身状态有了一定的感知能力,为上位机进行动作决策提供可靠的依据,提高了机器人的智能性。(来源:dzsc) 参考文献:[1]. ADXL202 datasheet http://www.dzsc.com/datasheet/ADXL202_125281.html.
[2]. GP2D12 datasheet http://www.dzsc.com/datasheet/GP2D12_982777.html.
[3]. PCB datasheet http://www.dzsc.com/datasheet/PCB_1201640.html.

基于CAN总线的仿人机器人力信息检测系统

随着信息检测技术和控制技术的发展,仿人机器人运动控制已经从传统的离线规划方法研究转向基于环境信息的实时控制研究,仿人机器人的实时姿态调整与实时步态生成方法也成为运动控制的研究重点。对于步行机器人而言,其脚掌所受到的地面反力信息是最重要的外部环境信息之一,它尤其能够反映仿人机器人的姿态信息,在仿人机器人的实时姿态调整中具有重要作用。早在1989年,日本早稻田大学就在他们研制的两足步行机器人WL-12RⅢ中应用了六维力/力矩传感器,该传感器安装在机器人的小腿上,机器人可根据反馈力信息在不平整地面上进行稳定行走;日本HONDA公司的仿人机器人P2,P3以及ASIMO均安装了集成六维力/力矩传感器,利用传感器信息检测地面反力信息。  在国家863计划支持下,国防科技大学机器人实验室于2003年研制出一台新型仿人机器人;同时与合肥智能机械研究所合作,在该机器人脚掌上安装了可检测地面反力信息的集成五维力/力矩传感器。本文通过对仿人机器人运动控制系统结构和传感器电路结构的分析,提出了一种基于CAN总线的力信息检测系统;通过实验表明,该力信息检测系统能够满足力信息采集的基本要求,为其他外部环境信息的采集建立了一定基础。  仿人机器人控制结构分析与外部传感信息采集结构  将仿人机器人控制系统的大开环变成大闭环对控制系统的上位计算机处理能力、上下位机与传感器信息之间的传输通道结构以及传感器信息采集与处理提出了挑战。它要求上位计算机具备实时多任务处理能力,控制系统具有便于扩展的多传感器信息采集与处理通道。增加外部信息传感器是控制结构改进的最基本条件。  增加外部信息传感器,首先要在现有控制系统硬件结构的基础上,扩展外部信息采集与处理模块,形成开放的分层信息采集与处理结构。结构的底层节点由多个传感器信息采集和预处理模块(包括解耦和滤波等)构成,得到的处理信息通过合适的物理通道传送到决策层计算机,形成一个从环境信息到机器人动作序列产生的过程。  选择实时性强且易于扩展的物理通道,可以增强控制系统的外部传感扩展能力。在仿人机器人运动控制系统中,上下位机之间通过PC/104总线和RS232串行总线交换信息。当系统需要扩展外部传感器时,由于PC/104总线的有限驱动能力,通过PC/104总线只能扩展相当有限的外部信息传感器且扩展不便(涉及到地址的重新分配等问题);RS232串行总线不能满足高速实时信息传输与处理要求,因此考虑采用现场总线方式,如CAN总线,作为外部信息传输通道,同时设计其与上位机的通信接口。理想信息采集结构如图1所示。 图1所示的信息采集结构,具有较强的易扩展性和较高容错性能。每一个外部信息传感器都可以独立设计;在整个信息采集结构中,每个模块都是对等的,之间可以点对点通信;上位机可对各个传感器信息处理模块的广播,信息处理模块的增减不会对整个信息传输通道产生影响,有利于传感器及其处理模块的扩展和维护。另外,从底层通信协议角度而言,这种采集结构亦具有较高容错性能。  力/力矩传感器的电路结构及工作原理  五维力/力矩传感器的电路结构如图2所示。传感器基本采集处理原理:当传感器受到外力或外力矩作用时,弹性体产生形变,导致全桥桥路中的应变片阻值发生改变,改变桥路输出电压;桥路输出电压通过前置滤波与放大进入SoC,通过A/D变换得到的数字信号通过CAN总线或
RS232传输到上位机。
  力/力矩传感器与控制系统的电路接口设计方法  接口电路的基本功能  仿人机器人底层控制器与上位机接口采用PC/104总线方式,力/力矩传感器信息传输采用CAN总线结构,因此需设计CAN总线与PC/104总线之间的接口,实现已有控制系统与传感器之间的通信及对力/力矩信息的预处理,如图3所示。 接口电路的硬件结构与基本设计原理  综合考虑接口电路对主处理器的要求,如对力/力矩信息的实时处理能力、外设扩展能力等,选用TMS320LF2407作为主处理器,通过对CAN总线和双端口RAM的读写控制,实现力信息的读取、预处理和上传。接口电路基本原理如图4所示。  选用TMS320LF2407作为主处理器。它采用实时信号处理体系结构,可达到30×106条指令/s的执行速度,供电电压为3.3V,功耗低,片内外设中集成有控制器局域网络(CAN)2.0B模块和SCI模块。  传输数据主要包括两个力/力矩传感器的五维力信息和经过预处理得到的数据,因此双端口RAM选用IDT7132(2K×8bit)。一个端口接PC/104总线的数据线、低位地址线、高位地址译码产生的选通信号以及读写信号,译码通过MAX7032,根据上位机的空闲地址分配RAM地址;另一个端口接经过电平转换的DSP数据线低位地址线、高位地址译码产生的选通信号以及读写信号,通过SN74LV08A译码,分配的地址为F800~FFFF,通过SN74LV245A完成总线驱动和电平转换。 选取PCA82C250T作为驱动CAN控制器和物理总线间的接口,提供对总线的差动发送和接收功能。同时利用DSP的SCI模块扩展了一路RS232串口,选用3.3V供电的RS232驱动器MAX3320作为串口驱动器,与PC机进行通信。  接口电路的软件流程  接口电路驱动程序中,首先对DSP进行初始化设置,包括定时器初始化和CAN模块初始化以及在IDT7132中设置平滑数据队列等;然后向发送邮箱中写入0或1,即对传感器清零或者请求发送数据;接收到数据之后,将数据从接收邮箱中读入平滑数据队列中,进行平滑数据处理,供上位机查询和读取。  在DSP的初始化设置中,首先通过设置MCR寄存器来配置CAN引脚;初始化位定时器主要是设置寄存器BCR1和BCR2,决定CAN控制器的通信波特率、同步跳转宽度、采样次数和重同步方式。对邮箱的初始化主要是设置邮箱的标识符;对发送的数据区赋初值,需要清零传感器返回值时,数据区赋值0,需要读取数据时,数据区赋值1。发送信息首先要使能发送邮箱,然后设置发送请求位,等待发送中断标志位置位,若为1,则发送成功,最后清除发送中断标志位和发送应答位。接受信息时,要对接收邮箱进行初始化,设置标识符以及与标识符相关的局部屏蔽寄存器(LAM);然后等待接收中断标志位MIFn置位,若MIFn=1则接收成功,最后清除接收中断标志位和接收信息悬挂位。接收数据后,根据传感器解耦矩阵完成数据解耦及平滑滤波。  根据文中提出的设计方法,已设计相应的电路,实现了对力信息的实时采集和传送。所设计的系统能够完成力信息采集和平滑预处理工作,但还没有加入对力信息的数字滤波设计。通过对所采集的力信息数据的特性分析,下一步将在软件流程中增加数字滤波部分,使获取的力信息能够更加真实地反映机器人所受到的地面反力信息,使力信息能够应用于仿人机器人的大回路控制。 基于CAN总线和双传感器仿人机器人运动控制系统研究

机器人研究是自动化领域最复杂。最具挑战性的课题,它集机械。电子。计算机。材料。传感器。控制技术等多门学科于一体,是多学科高技术成果的集中体现。而仿人步行机器人技术的研究更是处于机器人课题研究的前沿,它在一定程度上代表了一个国家的高科技发展水平。运动控制系统是机器人控制技术的核心,也是机器人研究领域的关键技术之一,在机器人控制中具有举足轻重的地位,因此,各研究机构都把对机器人运动控制系统的研究作为首要任务。
动作协调。具有一定智能。能实现无线实时行走已经成为当今机器人发展的主题。随着以电子计算机和数字电子技术为代表的现代高技术的不断发展,特别是以DSP为代表的高速数字信号处理器和大规模可编程逻辑器件(以CPLD和FPGA为代表)的广泛应用,机器人运动控制系统也从以前单一的结构和简单的功能向着结构化。标准化。模块化和高度集成化的方向发展,采用开放式体系结构已经成为该技术发展的一种必然趋势。本文作者正是顺应这一趋势,设计出一种多功能分布式仿人机器人运动控制系统。
二。控制对象与要求
我们以国防科技大学机电工程与自动化学院机器人教研室最新研制的新一代仿人步行机器人为研究对象(其外形如图1所示)。该机器人高约1.55m,重约65kg,使用电池供电,无需外接电源和控制信号线,可以实现无缆行走,还可以完成人的腿部。手部和头部的一些基本动作,已经初步具备了人类的外形特征。这台新型仿人机器人一共具有36个自由度(如图2所示),其中上肢12个,下肢12个,头部2个,手部10个;下肢各个关节有位置传感器,足部有多维力/力矩传感器;具有视觉传感。语音控制系统以及无线遥控模块;整个控制系统。电源集成在机器人本体上。为了使之真正具有“仿人”的特点,控制系统必须能够完成包括运动控制与规划。视觉感知处理。语音识别和其它环境感知在内的多种功能。其中,运动控制是整个控制系统的关键,它必须能够满足以下要求:(1)系统集成度高。体积孝重量轻。功率大。效率高和机载化。 (2)各个模块之间的连接简洁,便于安装和维护。
(3)控制器应具有良好的动态响应和跟随特性,稳态误差和静态误差校
(4)系统集成在机器人本体上,电磁干扰较强,必须具有较强的抗干扰能力。
(5)各部分的数据交换必须实时有效和准确可靠。

三。动控制系统设计 一种基于CAN现场总线的新型控制结构。整个控制系统采用集中管理分散控制的方式,按照控制系统的结构和功能划分为三层:组织层。协调层。执行层。其中,组织层由机器人本体外的一台工作站组成,主要负责实现人机交互。无线通讯。语音。视觉以及宏指令生成等功能,属于智能控制范畴,本文不做深入探讨;协调层和执行层都集成在机器人本体上,完成具体的控制任务,属于物理控制范畴,是我们通常意义上的控制系统,其具体结构如图3所示。1.主控计算机模块主控计算机要求体积孝运算速度快,通常采用小板工业控制计算机,同时配备液晶显示器和自制专用功能键盘,主要完成在线运动规划。动作级运动控制。语音交互控制。视觉导引控制以及人机交互等功能。它接受本地传感器的信息,根据一定的控制算法和任务要求,实时生成关节轴系的任务规划数据并通过数据传输总线送至各底层运动控制器。 2.通信模块 主控计算机和各控制器之间采用CAN总线进行通信。CAN(Controller Area Network)总线是应用最为广泛的一种现场总线,也是目前为止唯一有国际标准的现场总线。相对于一般通信总线,它的数据通信具有突出的可靠性。实时性和灵活性。其特点主要有:
(1)CAN总线为多主方式,网络上任一节点均可在任意时刻向其它节点发送数据。
(2)CAN总线上的节点可以通过标识符分成不同的优先级,满足不同的实时要求。
(3)CAN总线采用非破坏的总线仲裁技术,低优先级节点不影响高优先级节点的发送。
(4)CAN总线节点在40m内通信速率最高可达1MBPS。
(5)CAN总线上的节点数在标准帧格式下可达到110个,扩展帧格式下几乎不受限制。
(6)报文采用短帧格式,传输时间短,出错率极低。
(7)CAN总线通信介质可选用双绞线,其结构灵活,连接方便。
CAN总线的以上特点使之十分适用于机器人控制,鉴于此,本文选用CAN总线作为机器人控制系统的通信工具。具体连接方式为:主控计算机通过CAN总线接口卡连接到总线上,各运动控制器也都通过总线收发器挂接到总线上,而且可以根据实际情况增减数目。由于CAN总线只用两根线进行通信,大大降低了系统连线的复杂程度,同时增强了系统的可靠性能。 (3)执行层模块
执行层处于整个控制系统的最底层,由不同类型的控制器组成,主要用来控制各运动关节轴系的具体执行过程。由于各运动关节电机的型号不同。承载的重量不同,对控制精度的要求也不同,我们分别为之设计了不同的运动控制器。
①开环DSP运动控制器
头部和上肢负载重量较轻,因此采用开环DSP运动控制器来对头部和上肢各关节进行控制。这些控制器不需要采样和反馈,直接接收主控计算机发来的控制命令,然后生成相应的执行命令发给各关节轴系,使之转到相应角度。
②开环MCU运动控制器
手部各个关节体积和质量都很小,故采用开环MCU运动控制器来进行控制。这些控制器采用MCS-51单片机作为处理器,可以直接嵌入到手掌内,它们接收主控计算机的控制命令,利用其IO引脚产生需要的多路脉冲控制信号,控制手部各关节的运动。
③闭环DSP运动控制器
腿部所有轴系均由直流减速驱动型电机构成,带零位检测。码盘和电位计反馈以及多维力/力矩传感器,结构复杂。控制难度大。精度要求也高,故采用闭环DSP运动控制器。这部分是整个控制系统的关键,也是我们研究的重点。

(4)控制系统流程
整个控制系统的具体流程为:系统开始运行并完成初始化工作;主控计算机根据规划和计算向底层控制器发送控制命令,底层控制器接收到命令后,结合各传感器反馈的信息,通过一定的控制算法生成相应的执行命令并发送给各关节执行轴系,同时把底层轴系的运行情况上传给主控计算机,主控计算机根据新的情况再产生新的命令发送给各控制器,如此反复。这事实上是两个闭环反馈过程,底层控制器通过传感器与各关节轴系之间进行小循环反馈,主控计算机通过各控制器与各关节轴系之间进行大回路反馈,这样可以使机器人具有更多的“智能”,更好的进行离线实时控制。
主控计算机每秒钟向底层控制器发送200组数据,底层控制器向主控计算机反馈同样数目的数据,而CAN总线的最大通信速率可以达到几千帧/秒,完全可以满足控制的要求。
四。控制器详细设计
控制下肢的闭环DSP控制器是整个控制系统的核心部分,承担着整个机器人的负载重量,输出功率大,对控制的精度要求也高,因此它的性能直接关系到机器人运动的实现。我们专门为之设计了基于双位置传感器的闭环DSP控制器,其结构如图4所示。 DSP主处理器选用的是TI公司的TMS320LF2407A芯片,它是TI家族C2000系列中的高档产品,非常适用于工业控制。它的两个事件管理器功能尤为强大,完全是为电机控制设计的,可利用多个PWM脉冲通道直接产生需要的PWM脉冲控制信号;其CAN总线模块可以直接与主控计算机进行通信而不需要增加CAN总线控制器;外部看门狗可以对控制器电压进行监控;外部存储器中存放着控制算法所需的必要参数。
控制器的双位置传感器由电压输出传感器和光电码盘传感器组成。其中,电压传感器把轴系的位置信息转换成电压信号,经过放大电路放大,再经过专门的A/D转换器转换成数字信号送入DSP主处理器。不用TMS320LF2407A自带的A/D转换器而使用专门的A/D转换芯片,这是为了提高转换的精度,因为TMS320LF2407A的A/D转换器所能接受的最高转换电压只有3.3V,而经过功率放大后的电压远远超出了此范围,所以使用了专门的A/D转换芯片。这部分电路虽然增加了控制器的复杂程度,却可以大大提高转换精度,所以是十分值得的。码盘传感器把轴系的位置信息转换成脉冲信号,经过光电隔离器件隔离后送入专用脉冲计数器,计数后的信息送入DSP主处理器。脉冲计数器选用当今流行的CPLD器件,其强大的功能对提高控制器的性能有很大的帮助,同时还可以作为译码电路为主处理器提供译码功能。
主处理器通过对接收到的传感器信号进行分析和计算之后产生相应的PWM脉冲控制信号,经过光电隔离和功率放大后送给底层轴系控制轴系的运行。使用双传感器可以大大提高反馈的精度,两路信号可以同时考虑,也可以一路为主,另外一路提供补充和参考。
主处理器通过CAN总线与主控计算机进行通信,接收主控计算机的命令并把底层信息反馈给主控计算机,实现更高一级的反馈控制。主处理器通过CAN总线收发器连接到总线上,为提高精度,中间需要进行光电隔离。

该控制器直接安装在仿人机器人的体内,每个控制器可以同时控制6个关节轴系,整个下肢只需要两个控制器就可以实现其运动控制。
五。结论
我们在充分吸收当今相关学科高技术成果的基础上,设计出一套速度快。稳定性强。集成度高。结构灵活。使用方便的仿人机器人运动控制系统。整个运动控制系统可直接嵌入到机器人本体内,以便在实际运行中圆满地完成规定的控制任务。同时,该控制系统还有很强的扩展功能,可以方便地移植到其它类似的控制机构中去,是一种多功能通用型控制系统,具有广阔的应用前景。(来源:电子发烧友)仿人型机器人控制系统设计的几个问题
1   引言
仿人型机器人由于具有类人的基本外形,在实际的生活中,能够代替人完成很多工作,因此对仿人型机器人的研究具有实用价值,各国都在投入巨大的人力物力进行研发[1]。仿人型机器人具有多自由度的机械结构要求,因此需要对机器人的各个关节通过电机来完成转动动作。这对于电机驱动控制提出了很高的性能要求。本文提出了一种基于STM32单片机的仿人型机器人控制系统方案,可以同时对机器人关节所需的16路舵机进行驱动控制。 2   硬件解决方案
本控制系统的硬件部分共分为5个模块,其硬件系统模块图如图1所示。 主控制器采用STM32F103xB增强型系列单片机,该系列单片机使用了高性能的ARM CortexTM-M3 32位的RISC内核,工作频率为72MHz,内置高速存储器(128K字节的闪存和20K字节的SRAM),增强型I/O端口[2]。这些性能使得STM32F103系列微控制器非常适合应用于小型仿人型机器人的控制系统。由于仿人型机器人的体型限定,因此我们在设计舵机控制板时采用了STM32F103系列的小型贴片封装型号STM32F103CBT6。以得到体积较小的舵机控制电路板,如图2所示。为了实现对多自由度复杂结构的仿人型机器人进行动作控制,需要较多控制路数的舵机控制板。由于舵机的角度控制是采用PWM波形输出,当单片机IO口的输出脉冲宽度变化时,舵机舵盘角度发生改变,如图3所示[3],因此在舵机控制板电路设计中,充分利用了STM32单片机的IO口数量多且具有PWM输出的技术优势[4]。共设计了16路舵机控制口,可以保证16个机器人关节同时动作。舵机驱动IO接口分布在PCB板的两侧,便于插拔。
在舵机的控制中,有一个容易出现的问题就是舵机抖舵问题。这种问题一般发生在采用普通电池做为机器人系统的主电源的情况下,如采用多节AA型镍镉或镍氢电池串联组成机器人供电主电源。原因是这些电池由于容量和放电能力的局限,无法在其额定电压下提供长时间稳定持续的大电流。在仿人型机器人的多路舵机同时工作时,采用普通电源输出的电压会迅速降低,从而导致舵机的供电不足,最终出现舵盘异常抖动,造成机器人在执行动作时的抖舵现象。因此我们设计的仿人型机器人控制电路中采用了型号为格氏25C放电倍率,容量为2200mAh,额定电压为11.1V的锂聚合物航模电池作为主电源。分为5V控制信号电源和6V舵机驱动电源,如图4所示。为了保证多路舵机同时工作时所需要的大电流,利用锂聚合物电池具有很强的持续放电能力,选用了型号为120W 12A大功率降压模块[5],将机器人的供电电源稳压在+6V,放电电流峰值为12A,如图5所示。利用光电耦合器隔离单片机IO口控制信号和舵机驱动信号,提高控制信号的抗干扰能力。舵机的IO口电路设计原理图如图6所示。这样解决了多路舵机由于同时工作时,电源电源被拉低引起的舵盘异常抖动问题。舵机控制板在初始上电时,所有IO口会同时通入无序的PWM信号,造成瞬间出现巨大的电流消耗。经实验测得舵机控制板上电时,单个IO口的峰值电流可以达到1.5A以上。因此在16个舵机同时初始上电通入PWM信号时,其总电流将达到24A以上,这就大大超出了大容量直流降压模块的极限供电电流,导致电源电路进入过流保护,整个舵机控制电路将无法进入正常的工作状态。为了解决这个问题,我们在STM32单片机上电初始化时,首先只让IO口1和2输出PWM信号,然后同时再让IO口3和4输出初始化PWM信号,以此顺序最后让IO口15和16输出PWM信号。这样就保证IO口初始化时,最多只有两路PWM信号同时通入。在机器人正常动作时,同时动作的舵机数量不超过6个,即6个IO同时输出的峰值电流为9A,低于大功率降压模块的最大输出电流12A,因此整个电路在工作期间的极限电流均小于12A。最终达到了舵机控制板稳定工作的硬件要求。
   
3   软件部分的设计

仿人型机器人控制系统的软件分为两种模式:调试模式和正常模式。
调试模式:机器人上电默认静止,以响应上位机信号为主。在该模式下,上位机通过RS232串口对机器人进行在线控制,可以对单个舵机的角度进行精确调整,编排好的流程动作单次执行,流程动作的全部执行等,并显示当前机器人对代码解析值。调试模式的工作界面如图7所示。
正常模式:机器人上电即开始执行调试完毕的全套程序动作。为了实行软件控制,采用了多任务模块的定时轮换机制[6]。共建立了3个模块任务:任务0用来解析送入该任务的软件代码值到PWM输出的转换。任务1用来调用每套动作编码,连续的将得到的软件值发送给任务0。任务2为串口处理任务,通过分析串口发来的数据进行模式的转换和响应。其程序流程图如图8所示。4   系统调试效果
设计该仿人型机器人的走步步态时,主要考虑了机器人的自重为2.53Kg,身高为42cm,因此机器人的脚和手臂的舵机输出幅度不能太大,否则会导致机器人走步时的重心偏移太大,造成机器人翻倒。因此在设计机器人的脚掌时,适当增大了与地面的接触面积,脚掌的尺寸为8.5×15cm,同时加快了脚步移动的频率,并在脚部增加了额外的配重,以增强机器人在走步过程中的稳定性,其走步的步态如图9所示。该型机器人的走步步态协调一致,在2012年中国机器人大赛仿人竞速比赛项目中获得二等奖。 5   结束语
文中基于STM32微控制器的仿人型机器人控制系统,能够灵活地控制16路大扭力舵机,通过大功率降压电源模块,可以得到16路舵机同时动作时所需要的直流电压,实现了仿人型机器人的走步动作,可作为高校学生进行机器人技术创新时的参考。 参考文献:
[1] 张涛,机器人引论[M].北京:机械工业出版社,2010.
[2] 彭刚,秦志强.基于ARM Cortex-M3的STM32系列嵌入式微控制器应用实践[M].北京:电子工业出版社,2011.
[3] 王立权,机器人创新设计与制作[M].北京:清华大学出版社,2007.
[4] 王永虹,徐炜,郝立平.STM32 系列ARM Cortex-M3微控制器原理及实践[M].北京:北京航空航天大学出版社,2008.
[5] 超小型120W 12A大功率降压模块.http://item.taobao.com/item.htm?spm=0.0.0.0.hkpcV8&id=2915378925
[6] 田开坤,如何设计复杂多任务程序[OL].百度文库.http://wenku.baidu.com/view/af6ae2ec4afe04a1b071de23.html

来源:http://www.ca800.com/apply/d_1nspue4rk8pq1_1.html

相关文章: 基于体感的NAO机器人展示系统研究与开发http://www.qianluntianxia.com/lunwen/297/2325195.html 仿人机器人的研究历史、现状及展望http://www.docin.com/p-883165477.html 一种新型并—串仿人机器人基本理论及控制系统研究http://d.wanfangdata.com.cn/Thesis/Y2553079 机器人控制原理http://www.doc88.com/p-1055432564692.html 仿人机器人运动控制系统设计http://d.wanfangdata.com.cn/Thesis/D069314 仿人机器人控制系统的设计与实现http://d.wanfangdata.com.cn/Thesis/Y2097973 仿人机器人关节驱动微型伺服系统http://www.docin.com/p-1247643030.html 基于DSP仿人机器人关节控制器设计http://d.wanfangdata.com.cn/Periodical/xddzjs200920010 仿人机器人控制系统设计http://www.doc88.com/p-9843916931841.html 仿人机器人智能交互关键技术的研究http://d.wanfangdata.com.cn/Thesis/Y1184255 仿人机器人的关节运动控制系统与传感器系统设计http://d.wanfangdata.com.cn/Thesis/D451383 人形机器人多关节的电机伺服控制系统介绍http://www.taodocs.com/p-54435365.html 仿人机器人控制系统设计与稳定性研究型http://www.doc88.com/p-6731250514496.html 基于AGA的仿人机器人PID控制参数优化http://www.eepw.com.cn/article/159385.htm

来源:本文素材来源网络由机器人2025编辑部整理,转载请标明出处!